1,377 research outputs found

    Three-dimensional modeling of natural heterogeneous objects

    Get PDF
    En la medicina y otros campos relacionados cuando se va a estudiar un objeto natural, se toman imágenes de tomografía computarizada a través de varios cortes paralelos. Estos cortes se apilan en datos de volumen y se reconstruyen en modelos computacionales con el fin de estudiar la estructura de dicho objeto. Para construir con éxito modelos tridimensionales es importante la identificación y extracción precisa de todas las regiones que comprenden el objeto heterogéneo natural. Sin embargo, la construcción de modelos tridimensionales por medio del computador a partir de imágenes médicas sigue siendo un problema difícil y plantea dos problemas relacionados con las inexactitudes que surgen de, y son inherentes al proceso de adquisición de datos. El primer problema es la aparición de artefactos que distorsionan el límite entre las regiones. Este es un problema común en la generación de mallas a partir de imágenes médicas, también conocido como efecto de escalón. El segundo problema es la extracción de mallas suaves 3D que se ajustan a los límites de las región que conforman los objetos heterogéneos naturales descritos en las imágenes médicas. Para resolver estos problemas, se propone el método CAREM y el método RAM. El énfasis de esta investigación está puesto en la exactitud y fidelidad a la forma de las regiones necesaria en las aplicaciones biomédicas. Todas las regiones representadas de forma implícita que componen el objeto heterogéneo natural se utilizan para generar mallas adaptadas a los requisitos de los métodos de elementos finitos a través de un enfoque de modelado de ingeniería reversa, por lo tanto, estas regiones se consideran como un todo en lugar de piezas aisladas ensambladas.In medicine and other related fields when a natural object is going to be studied, computed tomography images are taken through several parallel slices. These slices are then stacked in volume data and reconstructed into 3D computer models. In order to successfully build 3D computer models of natural heterogeneous objects, accurate identification and extraction of all regions comprising the natural heterogeneous object is important. However, building 3D computer models of natural heterogeneous objects from medical images is still a challenging problem, and poses two issues related to the inaccuracies which arise from and are inherent to the data acquisition process. The first issue is the appearance of aliasing artifacts in the boundary between regions, a common issue in mesh generation from medical images, also known as stair-stepped artifacts. The second issue is the extraction of smooth 3D multi-region meshes that conform to the region boundaries of natural heterogeneous objects described in the medical images. To solve these issues, the CAREM method and the RAM method are proposed. The emphasis of this research is placed on accuracy and shape fidelity needed for biomedical applications. All implicitly represented regions composing the natural heterogeneous object are used to generate meshes adapted to the requirements of finite element methods through a reverse engineering modeling approach, thus these regions are considered as whole rather than loosely assembled parts.Doctor en IngenieríaDoctorad

    Modelado de objetos heterogéneos: una propuesta con base en funciones implícitas

    Get PDF
    Modeling objects, their properties and relations is an important topic in computer science. In this sense, this research contributes to the framework of heterogeneous solid modeling, as well as the popular and intricate study of implicit solid representation. The approach presented here is broad and generic, but this article will focus on bio-CAD models, alluding to the existing extension and implementation in other fields. The overall aim of this work is to demonstrate that solid models of heterogeneous object can be built implicitly. This is shown to have promise in practical applications from biomedical computing to computer animation and engineering. The approach adopted here is based on the observation that current solid models cannot intrinsically represent multiphase geometric information along with the attribute information. This makes necessary to explore new modeling techniques in order to represent real-world objects. The availability of such modeling techniques remains central to the design, analysis, and fabrication of heterogeneous objectsEl modelado de objetos, sus propiedades y relaciones es un tema importante en las ciencias de la computación y la informática. En ese sentido, esta investigación busca contribuir al modelado de objetos sólidos heterogéneos, así como al complejo estudio de la representación implícita de objetos sólidos. El enfoque que aquí se presenta es amplio y genérico, pero este artículo se centra en modelos bio-CAD, aludiendo su extensión y aplicación a otros campos. El objetivo general de este trabajo es demostrar que los modelos geométricos de objetos heterogéneos se pueden representar de forma implícita. Esto promete tener gran variedad de aplicaciones prácticas desde la computación biomédica hasta la animación por computador y la ingeniería aplicada. El enfoque adoptado aquí se basa en la observación de que los modelos sólidos actuales no pueden representar intrínsecamente información geométrica multifase junto con la información de los atributos. Esto hace necesario explorar nuevas técnicas de modelado para representar objetos del mundo real. La disponibilidad de este tipo de modelos es fundamental para el diseño, análisis y fabricación de objetos heterogéneos

    Computational modelling of interactions between gold complexes and silicates

    Get PDF
    The interactions of gold complexes including gold chloro-hydroxy species, gold thiosulphate and gold thiourea, with protonated and deprotonated silicate monomers, are studied using density functional theory (DFT) methods. The previously published optimal geometry of gold complexes is used here, together with the geometry of silica monomers that is optimised and compared with experimental and available theoretical data. COSMO (COnductor like Screening Model) solvation simulation of different systems (for different pH and gold complexes) is also used to represent the surrounding aqueous environments. The interaction energy of gold complexes with silica species based on theoretical studies has been shown to correlate well with the extent of silica preg-robbing (sorption) per surface area of quartz determined experimentally. The ability of DFT to compute the interactions of different gold complexes involving significant relativistic effects, with other species, has been demonstrated in this study. This work allows us to explain and control the chemical processes which result in loss of gold from solution in hydrometallurgical extraction

    Evaluation of turbulent dissipation rate retrievals from Doppler Cloud Radar

    Get PDF
    Turbulent dissipation rate retrievals from cloud radar Doppler velocity measurements are evaluated using independent, in situ observations in Arctic stratocumulus clouds. In situ validation data sets of dissipation rate are derived using sonic anemometer measurements from a tethered balloon and high frequency pressure variation observations from a research aircraft, both flown in proximity to stationary, ground-based radars. Modest biases are found among the data sets in particularly low- or high-turbulence regimes, but in general the radar-retrieved values correspond well with the in situ measurements. Root mean square differences are typically a factor of 4-6 relative to any given magnitude of dissipation rate. These differences are no larger than those found when comparing dissipation rates computed from tetheredballoon and meteorological tower-mounted sonic anemometer measurements made at spatial distances of a few hundred meters. Temporal lag analyses suggest that approximately half of the observed differences are due to spatial sampling considerations, such that the anticipated radar-based retrieval uncertainty is on the order of a factor of 2-3. Moreover, radar retrievals are clearly able to capture the vertical dissipation rate structure observed by the in situ sensors, while offering substantially more information on the time variability of turbulence profiles. Together these evaluations indicate that radar-based retrievals can, at a minimum, be used to determine the vertical structure of turbulence in Arctic stratocumulus clouds

    NEXT-100 Technical Design Report (TDR). Executive Summary

    Get PDF
    In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (bbonu) in Xe-136 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout plane performing the energy measurement is composed of Hamamatsu R11410-10 photomultipliers, specially designed for operation in low-background, xenon-based detectors. Each individual PMT will be isolated from the gas by an individual, pressure resistant enclosure and will be coupled to the sensitive volume through a sapphire window. The tracking plane consists in an array of Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged in square boards holding 64 sensors (8 times8) with a 1-cm pitch. The inner walls of the TPC, the sapphire windows and the boards holding the MPPCs will be coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the light collection.Comment: 32 pages, 22 figures, 5 table

    Radon and material radiopurity assessment for the NEXT double beta decay experiment

    Full text link
    The Neutrino Experiment with a Xenon TPC (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in 136Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low background conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes have been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has started in Canfranc; in-situ measurements of airborne radon levels were taken there to optimize the system for radon mitigation and will be shown too.Comment: Proceedings of the Low Radioactivity Techniques 2015 workshop (LRT2015), Seattle, March 201

    Influence of Neospora caninum intra-specific variability in the outcome of infection in a pregnant BALB/c mouse model

    Get PDF
    Previous assays in pregnant animals have demonstrated the effect of different host factors and timing of infection on the outcome of neosporosis during pregnancy. However, the influence of Neospora caninum isolate itself has been poorly investigated. Here, we compared the effects on clinical outcome and vertical transmission observed in a pregnant mouse model following infection with 10 different N. caninum isolates. The isolates in our study included the Nc-Liv isolate and nine N. caninum isolates obtained from calves. Female BALB/c mice were inoculated with 2 × 106 tachyzoites at day 7 of pregnancy. Morbidity and mortality, in both dams and offspring during the course of infection, and transmission to progeny at day 30 postpartum were evaluated. The serum IgG1 and IgG2a production in dams were also examined. All dams showed elevated IgG1 and IgG2a responses, confirming N. caninum infection, although signs of disease were only exhibited in dams infected with 4 of the 10 isolates (Nc-Spain 4H, Nc-Spain 5H, Nc-Spain 7 and Nc-Liv). In neonates, clinical signs were observed in all N. caninum-infected groups, and neonatal mortality rates varied from greater than 95% with the isolates mentioned above to less than 32.5% with the other isolates. Vertical transmission rates, as assessed by parasite PCR-detection in neonate brains, also varied from 50% to 100% according to the isolate implicated. These results confirm the wide pathogenic and transmission variability of N. caninum. The intra-specific variability observed herein could help us explain the differences in the outcome of the infection in the natural host

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio
    corecore